Home Back

Motor Power Calculation for Pump (3-Phase)

3-Phase Motor Power Formula:

\[ P = \sqrt{3} \times V \times I \times PF \times \eta \]

Volts
Amps
(0-1)
(0-1)

Unit Converter ▲

Unit Converter ▼

From: To:

1. What is 3-Phase Motor Power Calculation?

The 3-phase motor power calculation determines the real power consumed by an electric motor driving a pump. It accounts for voltage, current, power factor, and motor efficiency to provide accurate power measurement in kilowatts (kW).

2. How Does the Calculator Work?

The calculator uses the 3-phase power formula:

\[ P = \sqrt{3} \times V \times I \times PF \times \eta \]

Where:

Explanation: The √3 factor accounts for the phase difference in 3-phase systems. The formula calculates real power by considering both the power factor (ratio of real to apparent power) and motor efficiency.

3. Importance of Motor Power Calculation

Details: Accurate power calculation helps in sizing pumps, selecting appropriate motors, estimating energy consumption, and evaluating system efficiency. It's crucial for energy management and cost estimation in industrial applications.

4. Using the Calculator

Tips:

5. Frequently Asked Questions (FAQ)

Q1: Why divide by 1000 in the formula?
A: The division converts the result from watts to kilowatts (kW) for more practical engineering units.

Q2: How does power factor affect the calculation?
A: Lower power factor means more current is required for the same real power, increasing losses in the system.

Q3: What's the difference between real and apparent power?
A: Real power (kW) does actual work, while apparent power (kVA) is the vector sum of real and reactive power.

Q4: How accurate is this calculation?
A: It provides good estimates but actual power may vary due to motor load conditions, temperature, and power quality.

Q5: Can I use this for single-phase motors?
A: No, single-phase motors use a different formula (P = V × I × PF × η) without the √3 factor.

Motor Power Calculation for Pump© - All Rights Reserved 2025